
N94. 35896

Computationally Efficient Multibody Simulations

/

/)

s

Jayant Ramakrishnan
and

Manoj Kumar

Dynacs Engineering Company, Inc.

34650 US Hwy 19 North
Suite 301

Palm Harbor, FL 34684

Abstract

Computationally efficient approaches to the solution of the dynam-

ics of multibody systems are presented in this work. The computa-

tional efficiency is derived from both the algorithmic and implementa-

tion standpoint. Order(n) approaches provide a new formulation of the

equations of motion eliminating the assembly and numerical inversion

of a system mass matrix as required by conventional algorithms. Com-

putational efficiency is also gained in the implementation phase by the

symbolic processing and parallel implementation of these equations.

Comparison of this algorithm with existing multibody simulation pro-

grams illustrates the increased computational efficiency.

1 Introduction

Current multi-link mechanism control systems are based on inverse kine-

matic approaches. These approaches are used primarily because of the com-

plexity and computational cost associated with the solution of the dynamics

of such systems. Typical systems include robotic manipulators and mobile

station servicing modules. In real-time control applications, a need exists for

highly efficient dynamics solution algorithms (as opposed to kinematic) that

will make the dynamic control of these mechanisms possible. The evolution

of the formulation algorithm and the numerical solution methodology over

the past decade to accomplish real-time control objectives is now presented.

PAGE BLANK NOT FILMED

TREETOPS developed in the mid-eighties was based on the minimum

dimension formulation of the multibody equations of motion. Originally

developed for bodies in a tree topology, kinematic relations were written

for the sequence of joints in terms of relative coordinates. The dynamics of

the multibody configuration were derived by projecting the translation and

rotation equations along the generalized speeds. The generalized speeds were

defined as the partial derivative of the expressions for body j translation

and rotational velocities with respect to the degrees of freedom [1]. The

algorithm resulted in a mass matrix of order(n) where (n) is the number of

degrees of freedom. As the complexity of the multibody systems increased,

the computational cost associated with this approach became prohibitively

large (order of n3).

The numerical order(n) approach was proposed in 1988 as a solution to

the prohibitively high computational cost associated with the n 3 algorithms.

Developed initially for chains of rigid bodies, the method was later extended

to flexible bodies. The equations of motion are again formulated in minimum

dimension (by the elimination of the non-working constraint forces) but now
a frontal and back substitution approach is used. The inertia and active

forces are shifted inboard to the core body for the solution of the equations

and then the procedure is reversed to obtain outboard body variables. This

frontal part and backsubstitution part result in the computational savings

through inversions of mass matrices of much smaller dimension than n, the

order of the system.

Symbolic processing of equations was the next step towards higher effi-

ciency. A generic equation file was used to provide the inputs to a symbolic

processor which eliminated unnecessary computations and generated a con-

figuration specific simulation code. By parsing, layering and simplifying

equations, an order of magnitude improvement over numerical implementa-

tion was achieved.

In 1990 , parallel implementation of the multibody dynamics algorithm

was attempted on four Intet 860 chips connected to a host IRIS workstation.

In the verification runs, for the class of problems tested (Large Space Struc-

tures, Space Station), a speed-up of more than two orders of magnitude was
obtained.

The current efforts in this area are focusing on bringing this technol-

ogy to fruition by refining and automating the implementation procedure.

556

Additionally, graphical user interfaces based on X-windows are being de-

veloped for pre and post processing. A symbolic programming language

that supports a whole family of entities (partioned matrix operations, vec-

tor operations, etc.) is being developed to support the quick and painless

generation of symbolic code for a variety of engineering applications. The

concept behind these technology thrust areas is presented in this paper.

The paper is organized as follows. A flavor of the Order(n) approach is

first presented. This is followed by a section on symbolic code generation.

Issues and our past experience with the implementation of equations on a

parallel hardware platform are then presented. Some of the practical prob-

lems solved using these simulations and performance comparisons are then

presented followed by conclusions.

2 Algorithm Formulation

A multibody dynamic system is characterized by several bodies intercon-

nected by joints that permit relative motion across them. Robots and space-

craft with articulated appendages such as solar arrays are typical examples

for such systems. The first step in the study of such systems is the derivation

of the equations of motion.

Early approaches to the dynamics formulation for multibody systems

required the inversion of the system mass matrix for every integration step.

Since the inversion of an n x n matrix involves operations of the Order(n3),

these are called Order(n 3) approaches. As the number of degrees of freedom

(DOF) increases, this matrix inversion, for every integration step, becomes

computationally expensive.

An Order (n) algorithm - so called because the computational burden

increases only linearly with the number of bodies - presented earlier in [2]

for systems containing rigid bodies demonstrated the achievable computa-

tional efficiency. Such an algorithm is attractive especially in on-line control

schemes that consider system dynamics. The algorithm was extended in [3]

systems containing flexible bodies.

2.1 System Description

A multibody system in a topological tree is shown in Figure 1. Body 1 is an

arbitrarily selected reference body assumed to be connected to an imaginary

557

/(,_ _ FRONTAL
- - -BACK-

SUBSTITUTION

f Bo< i Ist=t,!xllsl ixolgi l:j

Figure 1: General Tree Configuration and Body Pair Definition

inertially fixed body, numbered 0. For any other Body j, Body L(j) is the

adjacent body leading inward to Body 0 (or to the core body, Body 1). Body

L(j) is then defined as the body directly inboard of Body j. A kinematic

joint between the body pair j and L(j) allows relative motion between these

bodies. Let NTj and NRj denote the number of translational and rotational

DOF at j,h hinge, respectively.

2.2 Mathematical Formulation

The equations of motion are derived via Kane's method. The formulation

and the corresponding solution algorithm are based on the kinematic rela-

tionships between body pairs j and L(j). A joint between these bodies is

defined between the q node on body j and the p node on body L(j). Re-

ferring to Figure 2, we proceed as follows. The vector locating an elemental

mass elm on Body j, in the inertial frame, is given by

where, R_ locates the body frame _3, rJ is a vector that defines the un-
deformed configuration of the elemental mass drn in Sj, and uJ represents

558

Figure 2: A Generic Hinge Between a Pair of Deformable Bodies

the elastic deformation (vector) experienced by din. Using the method of

assumed modes, the elastic deformation of body j can be expressed as the

sum of the product of a set of assumed mode shape vectors __(r j) and their

time-varying amplitudes r/(t) as:

N ,_v/j

£= 1

where, N_Ij denotes the number of retained modes for Body j.

The acceleration of the elemental mass dm is obtained by differentiating

Eq.(1) twice with respect to time, as:

= RL(j} +--L(j) + u -- t2q

+ "(_)=m- × - "- '"_ (3)

+ ___ + ___ × (_('/-_-__ (_)
oo,L(j)

dJ j A d;L(j).._. _P (5)--LO) =

559

and _,n in Eq.(3) represents the remainder term that contains only cen-
trifugal and coriolis accelerations. Solid and open dots represent differenti-
ation in the inertial and local frames, respectively. Eqs.(4) and (5) provide

the recursive expressions needed for the Order(n) algorithm.

Now consider a leaf body, Body j in the tree topology. The total relative

degrees of freedom associated with this body are: NTj + NRj + NMj. For

the modal degrees of freedom associated with this body one can obtain the

equations of motion as:

--L(j)

(6)

The variables {_)J} and (0J } denote the translational and rotational accel-

erations across joint j, and are of dimension NTj and NRj, respectively.

The modal accelerations are denoted by {OJ} which is of dimension NIVIj.

Similarly, the equations of motion associated with joint jth DOF can be

obtained, as:

r _.jL(j)] _j RL(j)

l-I (7)

The right hand side terms {f,_}, {f_} and {f_} represent the active
force contributions and terms with • contain the remainder terms in Eqs.

(6) and (7). The Order (n) solution algorithm, consisting of a Frontal part

and a Backsubstitution part, is as follows:

2.3 Order (N) Algorithm

2.3.1 Frontal Part

Starting with the leaf bodies in the tree topology, first the modal acceler-

ations {/_J} are solved for, in terms of the body j joint accelerations, and
•"J &jinboard body accelerations RL(j) and using Eq.(6). The result is then--L(j)'

substituted in Eq.(7), and then the joint accelerations are solved for, solely

560

"'3 &jin terms of RL(j) and The recursive relations in Eq.(4) are then uti---L(j)"
lized to shift the inertia and active forces of Body j in terms of its inboard

body DOF and the procedure is carried out for all the bodies in the tree

topology, until the core body is reached. The core body accelerations are

then obtained in terms of external forces. This completes the Frontal part.

2.3.2 Backsubstitution

The steps involved in this part are the reverse of the steps outlined above.

Once the corebody accelerations are obtained, Eq.(4) is utilized to obtain

the outboard body accelerations and, using a modified form of Eq.(4), in

which the modal accelerations {_J} are eliminated, we obtain the joint ac-

celerations {_J} and {0J}. The body modal accelerations {_J} are then

obtained using Eq.(6). This procedure is continued for all the bodies in the

topology, starting with the bodies directly outboard of the core body.

The Frontal and Backsubstitution steps outlined above are also shown

in Figure 1. Note that the matrix inversions required in setting up the func-

tional evaluations needed for integration in the simulation correspond to in-

dividual joint DOF and the modal DOF, and thus much smaller than the sys-

tem mass matrix. This is because, the matrix [rnJ] is of order NMj X NMj

and the mass matrix [_,"tjj] associated with the joint DOF is at the most
L --J

t" yej
a 6x6 matrix. Thus, it can be seen that substantial computational savings

can be achieved using this algorithm, because the system mass matrix is
never explicitly inverted.

3 Symbolic Processing

Symbolic processing of the equations of motion of a multi-body structure

can result in a substantially more efficient simulation [4]. The increase in

efficiency is achieved through simplifications that are possible because of

special configuration characteristics as well as arithmetic and algebraic sim-

plifications. The symbolic processing module described here receives its

input from three sources:

(a) A configuration data file which describes the multi-body system being

simulated, its topology and properties.

(b) A flexible body data file which contains data relating to the flexibility

properties of each flexible body in the system.

561

FILE

OUTPUT

NASTRAN]INTERFACE

SIMULATION

CODE
OF__ERATOR

SOURCE
FILES

GENERATED

Figure 3: Context Diagram

(c) An equation file containing the equations of motion of a generic multi-

fie_ble body system.

The output from the processor is a set of FORTRAN files containing an

implementation of the specific set of equations of motion that are applicable

to this multibody configuration. A context diagram is shown in Figure 3.

The process involved in symbolically manipulating the equations of motion
consists of the following sequence: parsing, layering, simplification, scalar-

ization and code generation. These processes are described below.

3.1 Background

An equation consists of a left-hand-side and a right-hand-side. Equations

can be represented in several forms. A convenient method of representation
uses factors, terms and expressions. A factor is the smallest building block

of an equation. The second building block of an equation is a term. A

term may have a single factor as its element or a combination of factors

separated by some operation between them. One or more of the terms when

summed or multiplied together result in an expression. The left-hand-side

of the equation consists of a single factor. The right-side of the equation is

usually in the form of expression. If the factors are multiplied together to

562

make up a term, and the terms are summed together to form an expression,

the equation is said to be in Sum of Products (SOP) form. If the factors

are summed together to make up a term, and the terms are multiplied

together to form an expression, the equation is said to be in Product of Sums

(POS) form. The equations input to the symbolic manipulator are usually

in matrix-vector form. The equations produced as a result of processing are

in a scalar form. The different processing steps for each of the equations

are parsing, reducing, layering, simplification and scalarization.

3.2 Parsing

Parsing is the translation of an algebraic expression from a form readable by

humans to an internal form which can be easily manipulated by a computer.

Once a set of equations representing a specific multibody model has been

selected, they are "parsed" to generate the desired form of the equation so

that they can be further processed.

The primary stage of the parsing process involves scanning each of the

equation strings. The parser scans each of the equation strings and produces

a stream of token representations. A brief description of the process of

scanning and tokenization is contained below.

3.2.1 Scanning

The primary function of the scanning process is to read each input equation

string and group the input characters into tokens. A token is basically an

identifier. The approach used to scan the equation string could be either

Top-Down, i.e.,starting with the largest building block, or Bottom-Up, i.e.,

starting with the smallest building block. The method used here is the

Top-Down method. The scanner first finds the first token (the LHS of the

equation string). It inspects it to check for validity. An error message is

sent if the token is not valid. Next the scanner looks for the separators of
the LHS and the RHS.

Scanning of the RHS involving an expression is a slightly more compli-

cated process. The scanner first starts out with the first expression. It then

searches for the tokens that make up the expression, as well as the opera-

tors between the tokens. Once all the tokens have been parsed the scanner

searches for the next expression in the list and carries out the same process

until all of the expressions have been parsed. The next step is tokenizing.

563

3.2.2 Tokenizing

As the equation string is scanned, the tokens are inserted into their respec-
tive data structures. The information that needs to be stored for each of

the tokens includes the names, their types (matrix, vector, scalar), dimen-

sions, the pointer to the next token in the expression, and the operation be-

tween the two tokens. Once all the tokens defining the LHS and the RHS

of an equation string have been created, they are linked together with the

help of pointers to form the internal representation of the equation string.

3.3 Layering

This is a method by which a complex equation is split into a set of simpler

equations. The method of splitting is selected in such a way that it results
in the least number of operations (multiplies and adds) to be performed. An

example given below demonstrates this process:

Z=A.B*C

where A is a matrix of size (1 x 2), B is a matrix of size (2 x 2) and C is

a matrix of size (2 x 3).

The process of layering results in two equations

For the matrix sizes shown, if Z is computed explicitly without the use of

intermediate variables, it would require 24 multiplies and 9 adds. Using the

layering technique shown above, it would require only 10 multiplies and 5

adds.

3.4 Simplification

Once an equation is parsed and layered, it undergoes simplification to pro-

duce a minimal form of the equation. Simplification occurs at two stages.

First the matrix-vector equation itself is simplified. Second the scalar equa-

tions describing the elements of the factor are simplified. The two stages
are discussed in more detail below.

564

3.4.1 Matrix-Vector

The parser converts the matrix-vector algebraic equations to matrix-vector

data structures. Simplifications of the equations involve operations such as

the elimination of factors which are zero or have zero coefficients, identifying
factors which are diagonal, etc. Basic rules of matrix-vector arithmetic
follow.

3.4.2 Scalar

The scalar elements of each equation may allow simplification using the

basic rules of scalar arithmetic. For space considerations, these rules are

not presented here.

3.5 Scalarization

The process of generating the scalar elements of a matrix-vector equation is
called scalarization. Scalarization of the factor that forms the left-hand-side

of the equation results in multiple scalar equations, one for each element of
that factor.

3.6 Code Generation

Finally, the parsed, layered, simplified and scalarized equation has to be
converted into FORTRAN source code. This involves the conversion of the

internal data structure into a string format, taking into account the various

syntax rules of the FORTRAN language. This process is referred to as code
generation.

4 Parallel Processing

The recursive nature of the Frontal solution algorithm makes it amenable

to parallelization for a wide class of space structures. The availability of

relatively inexpensive high-speed processors makes it possible to design and

build parallel architectures at relatively low cost. A dedicated system with

four Intel 860 processors was built to demonstrate the suitability of parallel

architectures to the dynamics of multibody systems.

565

COLOR GRAR-ICS [
DISPt.AY

NETW_ JINTEPJ=ACE

II

PROCESSOR

II

P_=I_I.LB. ICC_I',n'RCC.L.ER

II
HIGH SPEED PARALLEL

ARCHITECTURE

GRAI::NICS
ENGINE

Figure 4: Hardware architecture

4.1 Architecture

The system consisted of a host machine on which all the graphical modeling,

animation and all user interaction were performed and a dedicated parallel

architecture on which the dynamics computations were performed. The host

machine which acted as the front-end was a standalone SGI Personal Iris

whereas the numeric intensive back-end consisted of a Sun SparcEngine host-

ing four Inter 860 processors on the VME bus (an individual 860 processor

running at a 40 MHz rate is capable of a peak floating point performance of

80 MFLOPS). Details of the architecture are shown in Figure 4.

Communication between the processors was implemented using message

passing. Message passing routines (send and receive) were implemented

using memory shared over the VME bus.

4.2 Parallelization

The symbolic code generator discussed in the previous section was used to

generate the parallelized software. The code generator read in the topology

information and identified the segments of the topology which could be

processed concurrently. The generated code reflected distribution of the

566

O ®

O
O

Figure 5: Assembly complete Space Station

code on the different processors and also included the messages to be passed
between processors.

An 11 body (140 DOF) model of the Space Station has been chosen

to demonstrate the parallelization process. Figure 5 shows the Assembly

complete model of the Space Station as per the November 1989 model. This

model of the Space Station has 8 photo-voltaic arrays, two power booms and

the main truss (core body) making up the 11 body configuration. The 8 PV

arrays are treated as leaf bodies and the frontal and kinematic computations

(up to Eq. 7) for these bodies are computed simultaneously. This process is

repeated recursively with the two power booms being processed simultane-

ously on two processors. Finally the core body accelerations are solved on a

single processor and the backsubstitution is performed concurrently in the

reverse sequence. The division of the frontal computations on to the four

processors is shown in Figure 6.

5 Results

There are two sets of comparison results that are presented in this section.

The first set is for rigid 7 body models of the Space Station and the second

567

Pt'oc 4 [Body 5

[Body 6

1 I 8ody7

Proe 2

Pro¢ 3

8 y8 f_I

=; ,jft

Body[]

Figure 6: Division of computational load

set is for fle.,dble ll body models of the Station.

The 7 body model of the Space Station was integrated with the inte-

grated Space Station Attitude Control System (SS-ACS) and several simu-

lations were performed with varying degrees of freedom. This comparison

primarily highlights the performance of the frontal solution algorithm dis-

cussed in this paper with Kane's approach as used in TREETOPS. The

comparison results are presented in Figure 7.

The 11 flexible body (140 DOF) model of the Assembly complete Space
Station has been used here to demonstrate the performance gain by the

use of computationally efficient algorithms in combination with dedicated

high speed parallel hardware. The dynamic model of the Space Station was
combined with the baseline integrated SS-ACS. All the component modes in

the bandwidth of the controller were retained. (The controller was running

at 5 Hz whereas the highest component mode used was at 10 Hz). For this

case, a total of approximately 40000 lines of FORTRAN code were generated.

The complete non-linear multibody simulation for the 140 DOF system was

performed for a complete orbit (90 minutes) of simulation time.

The performance comparison of the dedicated parallel processing sys-

tem for the flexible body case with other commercially available hardware

568

_

5-

4.

3.

2-

1-

0E+0-

3 6

m

J
|
B

alg
l I_/_li

12 18 24 36

n Symbolic TREETOPS

Figure 7: Rigid body comparisons

is shown below in Figure 8. Also shown are the comparisons to conventional

approaches such as TREETOPS. These comparisons show that a simulation

run that took over 315 hours using TREETOPS was completed in approx-

imately 85 minutes, showing over two orders of magnitude improvement.

This comparison is for the same problem with TREETOPS running on a

single Intel 860 processor.

6 SUMMARY

The application of efficient algorithms to solve multibody dynamics prob-

lems has been presented in this work. While algorithms contribute to better

solution strategies, efficient software implementation enhances the speed-up

using these strategies further. In this work, the application of Order (n),

symbolic processing approach on a parallel platform has been demonstrated.

For the space station application considered in this work, a substantial per-

formance improvement was obtained.

569

f /

Symbolic/O(n) TREETOPS

System(4proc)

System(1 proc)

SGI

Sun-4

Vax-8850

85

225

675

2025

2355

18900

Figure 8: Fle.,dble body comparisons

References

[1] R. Singh, R. VanderVoort and P. Likins, Dynamics of Flexible Bodies in

a Tree Topology - A Computer Oriented Approach, Journal of Guidance,

Control and Dynamics, Vol. 8, No. 5, Sept-Oct 1985, pp. 584-590.

[2] R.P. Singh and B. Schubele, Computationally Efficient Algorithm

for Dynamics of Multi-Link Mechanisms, AIAA GN&C Conference,

Boston, MA, Aug. 1989.

[3] R.P. Singh, B. Schubele and S.S.K Tadikonda, Efficient Dynamics Mod-
els for Flexible Multibody Systems Continuing Open Loop Topologies,

Accepted for presentation at the PACAM III Conference, Brazil, Jan

5-8, 1993.

[4] P.E. Nielan, Efficient Computer Simulation of Motions of Multi-body

Systems, Dissertation, Stanford University, September 1986.

570

